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Calculation of power deposition patterns on the ergodic divertor 
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Abstract 

Energy deposition on the vented target plate of the ergodic divertor is analyzed. Shadowing is shown to depend on short 
parallel excursions. Short excursions also determine the radial penetration of the flux tubes and hence the poloidal phase of 
the field line with the magnetic perturbation. The latter feature is shown to govern the energy deposition patterns. A WKB 
calculation allows one to relate the field line radial excursion to the deposited energy flux. The good agreement between the 
experimental results and the model demonstrates that the calculation yields a comprehensive procedure to simulate power 
fluxes to all parts of the first wall. 
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1. Introduction 

On Tore Supra, the main areas of energy deposition are 
actively cooled [1]. On such elements an overshoot in the 
deposited power will not lead to a self healing process like 
a carbon bloom but to severe damage of the cooling 
system [2]. In view of increasing the performance capabil- 
ity of the ergodic divertor [3] it is thus essential to pre- 
cisely analyze the energy deposition pattern on the ergodic 
divertor module itself. Owing to the complex geometry of 
the module they are large areas where the power deposi- 
tion cannot be measured with the infrared imaging system 
[4]. It is therefore of the highest importance to compute the 
energy deposition pattern. The available measurements are 
used to validate the calculation. 

2. Energy transport in a stochastic boundary 

The Tore Supra ergodic divertor is based on a resonant 
magnetic perturbation of the equilibrium magnetic fields 
[3]. The helical radial magnetic perturbation is generated 
by six identical coils (toroidal width 6~o = 14 ° each) equally 
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spaced toroidally. The coils lie on a torus with major 
radius RED = 2.38 m and minor radius aED = 0.8 m. The 
toroidal periodicity of the magnetic perturbation is there- 
fore A ~p = 60 ° determining the main toroidal wave number 

= 6. The coils have a poloidal extent of 60 ~ 120 ° which 
determines the poloidal width of the spectrum, 6 m  ~ 6. 

They are located on the low field side of the torus so that 
the perturbation is negligible on the high field side. The 
poloidal wave number of the perturbation, ~ - - 1 8  for 
[3 v + l i / 2  ~ 0.7, is induced by the poloidal periodicity of 
the perturbing current flowing in the coil, lED < 45 kA. 
The resonant safety factor of the device, qres (P  = 1 )=  
~ / f i ,  is such that a field line experiences 3 to 4 radial 
steps on the low field side with no radial step on the high 
field side. 

The actively cooled target plates are located between 
the current bars where the radial component of the mag- 
netic field is the largest. The target plates extend poloidally 
over 8 ° and are inclined outwards. The constraint for a 
point r 0, 0 o, q~0 located on the target plate is r 0 = aED + 
((RED + aED)(6~p/2 -- qg0))tan(oztarget). In the present in- 
vestigation we consider a flat target plate, hence neglecting 
the structure along 0 o. The angle between the prototype 
target plate and the toroidal field is OLtarget ~ 14  °. It deter- 
mines the radial penetration of the target plate between the 
current bars, A rtarget ~ 0.065 m. 

The analysis of the energy deposition on the ergodic 
divertor is two fold, on the one hand there is the balance 
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between parallel and transverse heat diffusion ( XII and X :_ 
respectively), and on the other hand one must account tbr 
the stochastic features of the field lines characterized by 
two scales. On short parallel scales, LII ___ L K, field lines 
experience the exponential divergence governed by the 
Kolmogorov length, L K [3]. On long parallel scales, LII >> 
L K, transport is governed by the field line diffusion, DVL 
( ~  10 4 m 2 / m )  [3]. In a standard approach where energy 
diffusion is superimposed to field line stochasticity, one 
finds an effective radial heat diffusivity given by Xe,-g = 
DVL xIILT [3], where L T is the coherence length of the 
temperature field. The latter scale is the Kolmogorov 
length with a logarithmic contribution due to the transport 

balance, L T = L K log(o~ T) where aT 2 = Xli DFL/(  X ± LK). 
For each point in the divertor volume, the scale L T sepa- 
rates the connected points into a region governed by the 
exponential divergence of the field lines, termed the lami- 
nar region, and a region governed by the diffusion process 
beyond the laminar region. The energy deposition capabil- 
ity of a given flux tube in the boundary will therefore 
reflect both the geometrical features of the flux tubes 
which characterizes the laminar transport and the effective- 
ness of the heat transport to such a flux tube which is 
governed by the diffusion regime. 

3 .  S h a d o w i n g  o f  t h e  t a r g e t  p l a t e s  

Let us now consider a field line impinging onto the 
prototype vented target plate at ( r  o, 0 o, ~0 u) [4]. As one 
follows the field line away from the target plate, the field 
line will experience two to three radial steps over 3 A ~  
toroidal turns. In a situation close to the resonance these 
steps will be inwards and depend on the exact position of 
the starting point on the neutralizer plate. Let us introduce 
the radial penetration of the field line t~ r = r(3A ¢p) - aED. 
The cosine like poloidal dependence of the magnetic per- 
turbation governs the following approximation of 6r ,  

8 r (  ro, 0o, ~o o) = A r( 6b~, ro)COS(m( O o - 0(ro))). The ra- 
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Fig. 2. Dependence of the radial penetration Ar on the radial 
position on the target plate after 3A~0 toroidal steps. The vertical 
line at r0~ indicates the position of the boundary of the wetted 
region. 

dial position and the normalized magnetic perturbation 
6b r = 6 B r / B  v determine the maximum of 6r  against 00. 
This approximation is compared to the output from Mastoc 
(field line tracing code [3]). The magnetic equilibrium 
considered here is a standard q = 3 configuration at low 
toroidal field, B T ~ 2 T. On Fig. 1, 6r  is plotted versus 
0 o. The clear departure from the poloidal mid value, 
0(aED) = 4 °, is due to a shear effect which can be esti- 
mated to 1.8 ° (0(aED) -~ 5.8 °) in agreement with the code 
output. The shear effect and the departure of the radial 
magnetic perturbation from the cosine dependence leads to 
a fit with m = 23 instead of ~ ,  the mode number of the 
perturbation. This dependence on 00 determines the 
poloidal shape of the energy deposition patterns discussed 
in Section 4. 

The dependence of A r  on r 0 is illustrated on Fig. 2. 
For r o < ro~ ~ 0.86 m, the relationship is close to linear. 
Beyond ro~, there is a sudden drop of Ar  which is 
indicative of a shadowing effect. This shadowing is due to 
the divertor coil itself. It reduces the wetted fraction of the 

target plate defined by Swe,~ a = 1 - ( r o ~ -  aED) / A rtarge~. 
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Fig. 1. Radial penetration of the field lines starting at r o = aED 
versus the poloidal position on the target plate after 3A ¢, toroidal 
steps. The dashed curve is the cosine approximation. 
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Fig. 3. Dependence of the radial penetration A r and wetted 
traction of the target plate Sw~tt~a on the normalized perturbation 
6B r /B¢.  (d is the distance between the current bars). 
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For a series of calculations where the radial perturbation 
~B r (determined by lED) and the toroidal field B T are 
varied, Fig. 3, one finds that A r and the wetted fraction of 
the target plate, Sweu~ d, exhibit the same dependence on 
3b  r = 6 B J B  T, namely, the standard square root depen- 
dence with a threshold at 5.6 × 10 -3 [3]. In order to reach 
a full wetting of the target plate one would have to 
increase the perturbation level to 6b~ ~ 0.06 (B  T ~ 1.6 T, 
lED = 45 kA). Such a magnitude of the perturbation is in 
conflict with the limitation of the perturbation on the q = 2 
surface stemming from MHD stability issues [5]. This has 

led to reduce the target plate inclination t o  O/target ~ 7 ° in 
the new design of the vented target plates. 

4. E n e r g y  d e p o s i t i o n  pa t t erns  on the target  p lates  
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Fig. 5.2D contour map on the target plate surface of the minimum 
radius rmi . experienced by a field line over one poloidal turn 
(Mastoc criterion). The vertical lines indicate the analytically 
determined location of the patterns. Low toroidal field calculation, 
B T ~ 2 T .  

The short toroidal excursions determine the wetted 
surface of the target plate but do not yield the observed 
deposition patterns. The latter are governed by the series of 
radial steps which occur as the toroidal excursion is further 
increased• In a first sequence of steps A~p, the field line 
moves out of the perturbed region so that the radial 
position is unchanged and the variation of the poloidal 
angle is determined by the safety factor q( r  o + dir), Fig. 
4. Let NA ¢ be the toroidal angle such that the field line 
has returned to the low field side before experiencing a 
new series of radial steps, N ~ qh. Depending on the phase 
of the field line with respect to the perturbation and hence 
on the poloidal angle 0 h = 0 ( ~  = NA ~), the field line will 
either experience radial steps outwards, reconnecting the 
field line to a target plate, or steps inwards, connecting the 
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Fig. 4. Field line tracing of a 'cold' and a 'hot' field line. The two 
field lines start from neighboring positions on the target plate and 
reach similar radii after 3 steps, upper curve. During the high field 
side steps, the poloidal distance increases, lower curve, reaching 
7 r / ~  as the field line returns to the low field side. This corre- 
sponds to half the period of the perturbation so that the two field 
lines exhibit completely different behaviors onwards. The 'hot' 
field line penetrate further towards the plasma core while the 
'cold' field line is deflected back to the divertor. 

field line towards the core plasma, Fig. 4. The constraint 
on the values of 0y which ensure a connection to the 
energy source determines the 'hot '  patterns on the target 
plate. Using the dependence of O N on the safety factor and 
therefore on Ar  and hence r 0, Fig. 2, one can compute 
analytically the relation between the number of toroidal 
steps N performed in the calculation and the number of 
patterns and their position. A careful comparison between 
the measured patterns and the computed patterns allows 
one to determine the matching value of N, N T = 
(q/qr¢~)(~ + 2) for typical ohmic shots. This analysis 
provides an experimental measure of L T, L T = 
(hAq~)qR(1 + 2 / ~ ) .  

Mapping the minimum radius rmi n reached during NA 
toroidal steps starting from the target plate, the Mastoc 
criterion [3], one recovers these structures, Fig. 5. The 
analytical calculation of the patterns and their location on 
the plate for this 6b  r = 0.047 configuration shows that the 
two main structures correspond to N =  14 and N =  15. 
The pattern on the poloidal side bands of Fig. 5 corre- 
sponds to the N = 16 structure. 

5. ' E - f o l d i n g  l ength '  o f  the e n e r g y  f lux  in a s tochas t i c  
b o u n d a r y  

The relation between the radial excursion of a given 
field line and the parallel power flux to the target plate is 
derived from the standard calculation of the SOL e-folding 
lengths• 

d 2 ( ~ n T )  ~nT 
. . . .  ; rll X± d r  2 "rll 

( Lwa,, exp( nwall /n T ))2 

XIj 

(1) 

The difference with the standard SOL calculation is intro- 
duced by the long connection lengths to the wall Lwa,(r) 
and there radial dependence, when this connection length 
is larger than the scale L T, the probability for a direct 
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parallel deposition of energy along the given field line 
decreases. This effect is due to the combined effect of the 
stochasticity of the field line and of the transverse trans- 
port. Owing to the radial dependence of the connection 
properties one is led to introduce a local e-folding length 
of the energy A(r). 

A ( r )  = , I X ±  L~a,lexp( Lw~,,/Ly) (2 )  

i 

V XH 

Following the WKB procedure in the domain where the 
scale of variation of A(r) is much larger than A(r) itself, 
one obtains the radial dependence of the parallel heat flux 
for a stochastic field line exhibiting a radial penetration 

from aED to r. '"dr)/ 
Ql,(ro, Oo)(XCXIIX± e x p ~ - j  ~ ~ (3)  

The connection length to the wall is determined by 
~(Ar)Z /DFL . Adding the contributions from the various 
resonances leads to: 

Area(r) 
Lwau(r ) = ~ a D d ,  

DFL(r )H(  O.chi~(r ) _ O.c,hi~) (4)  

Are ~ is the distance between neighboring resonances. The 
Heaviside function H governs the threshold of the stochas- 
tic diffusion in terms of the Chirikov parameter [3], o'chi~ 

>_ ~&i, ~ I. 
The relationship between the deposited energy flux and 

the radial excursion of a field line, as computed from Eqs. 
(1)-(3),  is depicted on Fig. 6. The output of the calculation 
is the curve labelled QII" Starting from the wall and 
increasing the radial excursion of the field line, hence 
increasing the connection length to the wall, one finds 
three regimes. In the vicinity of the wall the available 
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Fig. 7. Computed 2D energy flux contours on the 'flat' target 
plate. The contour lines are normalized by the maximum of the 
energy flux. Low toroidal field calculation, B T ~ 2 T. 

energy flux is vanishingly small, i.e. the field lines with 
short connection lengths do not contribute to the energy 
exhaust. In a second region, the energy extraction capabil- 
ity rapidly increases. However, as the connection length 
further increases this extraction capability levels off and 
finally decreases in the third regime. In the later regime, 
the connection length is long enough to allow for the 
transverse energy transport to neighboring flux tubes. For 
the very long connection lengths, a balance between the 
transverse outflux and influx is to be introduced so that 
there is no effective roll over to the third regime. Beyond 
the stochastic boundary, the increase of the energy flux is 
governed by the decrease of the area of the flux surfaces. 
Radiation or charge exchange losses have not been incor- 
porated in the transport process although they can induce 
significant changes in the energy removal channels [6,7]. 
Changing the transport balance by increasing the ratio 
X ±/Xii will lower the peaking factor of the energy deposi- 
tion by feeding flux lines with short connection lengths, 
Fig. 6. 
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Fig. 6. Normalized parallel heat flux impinging onto the surface of 
the target plate versus the minimum radial penetration experienced 
by the flux tube over one poloidal turn. Increasing the transverse 
transport or lowering the parallel transport will feed the field lines 
with a smaller penetration and thus reduce the peaking factor, 
dashed curve. 
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Fig. 8. Experimental 2D energy flux contour on the vented target 
plate. As on Fig. 7, the contour lines are normalized by the 
maximum of the measured energy flux. Data of this figure is 
obtained from an infrared image of the prototype target plate in a 
low toroidal field experiment, B T ~ 2 T. 
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Using the computed relation between the radial excur- 
sion and the normalized energy flux, Fig. 6, one can map 
the rmi n contour plot, Fig. 5, into a parallel energy flux 
impinging onto the target plate. With the knowledge of the 
inclination of the field lines with respect to the target plate, 
one can compute the actual energy flux to the target plate. 
The energy flux impinging onto the 'flat' target plate is 
characterized by two patterns, Fig. 7. One of these patterns 
is made of the side bands of the shadowed N = 16 pattern. 
This relative increase in magnitude is due to the larger 
radial magnetic field at the boundary of the target plate. 
The second structure, the N = 15 pattern is located at mid 
target while the N = 14 structure located on the left hand 
side of Fig. 5 is smeared out due to a compensation 
between the divertor and ripple radial component Fig. 7. 
Owing to the viewing angle of the vented target plate by 
the infrared camera, the lower third of the target plate is 
gradually shadowed as its surface is lowered behind the 
front face, Fig. 8. This effect does not allow one to image 
the peaked N = 16 structure located on the lower part of 
the target plate. Furthermore, the image does not include 
the top tight the region where the calculation predicts 
another part of the peaked N = 16 deposition pattern. As 
in the calculated deposition pattern, the clearest structure is 
the mid-target structure. One finds a similar peaking fac- 
tor, and the same location on the target plate. 

6. Conclusion 

The energy deposition on the target plate of the ergodic 
divertor has been fully analyzed. The shadowing of the 
target plate has been shown to be a short scale effect 
governed by the tipple and the ratio of the radial magnetic 

perturbation to the main toroidal field 6b r. Both the wetted 
surface and the maximum radial penetration of the field 
lines on very short scales follow a standard square root 
dependence on 6 b r. The observed patterns are shown to be 
governed by the poloidal phase of the flux tubes with 
respect to the magnetic perturbation. The poloidal phase of 
the field lines is governed by the shear along the unper- 
turbed trajectory on the high field side, and therefore by 
the radial penetration on the short scale. This relationship 
allows one to determine analytically the location of the 
patterns. 

In order to complete the analysis, a WKB approxima- 
tion of the energy transport in the laminar region yields the 
deposited parallel energy flux in terms of the radial pene- 
tration of a field line over the typical parallel coherence 
scale. Using the computed angle between the field line and 
the target plate one can check the calculation with the 
experimental deposited energy flux. Agreement on both 
the peaking and position of the patterns is obtained. This 
gives us confidence that present calculations will allow to 
determine the energy deposition on poorly imaged parts of 
the ergodic divertor coils. 
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